
Exercises in Nonholonomic Mechanics

Exercise 1. Consider the Lagrangian

L =
1

2
m

(
ẋ2 + ẏ2 + ż2

)
−mgz

subject to the constraint
yẋ− xẏ = 0

1. Are these constraints holonomic or nonholonomic?

2. Write down the dynamic nonholonomic equations.

3. Write down the variational nonholonomic equations. Are they the same?

Exercise 2. Consider the Chaplygin sleigh. The Lagrangian is

L =
1

2

(
mẋ2 +mẏ2 + (I +ma2)θ̇2 + 2maθ̇ (ẏ cos θ − ẋ sin θ)

)
.

The knife edge constraint (no perpendicular motion) is

ẏ cos θ − ẋ sin θ = 0.

1. Is this system holonomic or nonholonomic?

2. Find the dynamic nonholonomic equations. In particular, find the dynam-
ics of v and ω where

v = ẋ cos θ + ẏ sin θ, ω = θ̇.

3. Conclude that as time goes to infinity, ω → 0 and v approaches a positive
number.

Exercise 3. Show that if one has a conserved quantity for a holonomic mechan-
ical system and one treats it as a nonholonomic constraint using the Lagrange-
d’Alembert principle, then one gets the correct holonomic equations of motion
(restricted to the surface of the constant conserved quantity).

Exercise 4. Let g be a Lie algebra with ω =
∑

i ω
iei ∈ g where {ei} is a basis.

Consider the kinetic energy Lagrangian

L =
1

2
⟨ω, Iω⟩ = 1

2

∑
ij

Iijω
iωj .
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1. Show that the momenta is pj =
∑

i Iijω
i and the resulting equations of

motion are
ṗj =

∑
ikℓ

ckijI
iℓpkpℓ (†)

2. Let G = SO3. Show that (†) produces the standard Euler equations

Iω̇ = (Iω)× ω.

Suppose we impose the left-invariant constraint

⟨a, ω⟩ =
∑
i

aiω
i = 0, a =

∑
i

aie
i ∈ g∗.

The constrained equations of motion are given by (where λ is an unknown mul-
tiplier to satisfy the constraints)

ṗj =
∑
ikℓ

ckijI
iℓpkpℓ + λaj

3. Show that in the case where G = SO3, the constrained equations of motion
are

Iω̇ = (Iω)× ω + λa, λ = −I
−1a · [(Iω)× ω]

I−1a · a
.

4. Conclude that the constrained equations of motion are volume-preserving
if there exists µ ∈ R such that (I−1a)× a = µa.

Exercise 5. Consider the vertical rolling disk. The configuration space is Q =
S1 × S1 × R2. Let the Lagrangian be the kinetic energy

L =
1

2
Iθ̇2 +

1

2
Jφ̇2 +

1

2
m

(
ẋ2 + ẏ2

)
.

The constraints of rolling without slipping are

ẋ = Rθ̇ cosφ, ẏ = Rθ̇ sinφ.

View this system as a bundle π : Q → S1 × S1 with π(θ, φ, x, y) = (θ, φ) with
horizontal space

H =
{
(θ̇, φ̇, Rθ̇ cosφ,Rθ̇ sinφ)

}
⊂ TQ.

Compute the curvature of this connection. Provide a physical intuition behind
your answer.

Exercise 6. Let Ψ : TQ → R be a constraint function; the dynamics are
constrained to the set M = Ψ−1(0). The constraint is considered ideal if

∑
i

q̇i
∂Ψ

∂q̇i

∣∣∣∣∣
M

= 0
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1. Prove that systems with ideal constraints are energy-preserving.

2. Prove that constraints that are linear in velocity are ideal.

3. Consider the rolling ball on a turntable. The Lagrangian is the kinetic
energy,

L =
1

2

(
ẋ2 + ẏ2 + k2

(
θ̇2 + φ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ

))
,

while the constraints are

ẋ− rθ̇ sinψ + rφ̇ sin θ cosψ = −Ωy

ẏ + rθ̇ cosψ + rφ̇ sin θ sinψ = Ωx

where Ω is the angular velocity of the table. Show that this system is not
energy-preserving and explain why that is reasonable.

Exercise 7. Consider the Poisson manifold P = se∗3 with the induced Lie-
Poisson bracket. Let an element of se3 be denoted as

ξ =


0 −ωz ωy u
ωz 0 −ωx v
−ωy ωx 0 w
0 0 0 0

 ,
and we choose a basis such that

ξ = ωxe1 + ωye2 + ωze3 + ue4 + ve5 + we6.

1. Explain the constraints D = ker e∗1 ∩ ker e∗5 ∩ ker e∗6.

2. Find the Euler-Poincaré-Suslov equations with the inertia tensor

I =


I1 0 0 0 0 0
0 I2 +ma2 0 0 0 −ma
0 0 I3 +ma2 0 ma 0
0 0 0 m 0 0
0 0 ma 0 m 0
0 −ma 0 0 0 m

 .

3. Qualitatively describe the dynamics.
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