Exercises in Hybrid Dynamics

Exercise 1. Consider the hybrid dynamical system

$$\begin{cases} \dot{x} = f(x), & x \notin S, \\ x^+ = \Delta(x^-), & x \in S. \end{cases}$$

Suppose that $x_0 \notin S$ and there exists a time $T_0 > 0$ such that $\varphi_{T_0}(x_0) \in S$ (the trajectory impacts S in time T_0).

- 1. Prove that if the flow intersects S transversely at $\varphi_{T_0}(x_0)$ then there exists an $\varepsilon > 0$ and a smooth function $\tau : \mathcal{B}_{\varepsilon}(x_0) \to \mathbb{R}^+$ such that for all $x \in \mathcal{B}_{\varepsilon}(x_0), \ \varphi_{\tau(x)}(x) \in S$. This shows that the return map is a smooth function. Hint: Implicit function theorem.
- 2. Find an example where the flow does not intersect S transversely and the previous result fails.

Exercise 2. Consider the following planar hybrid dynamical system. Let the continuous dynamics be governed by (in polar coordinates)

$$\dot{r} = 1 - r, \quad \theta = 1.$$

Suppose that impacts occur along a ray emanating from the origin, $S = \{(r, \theta) : \theta = \alpha\}$ and let the impact map be

$$\Delta(r,\alpha) = (\beta r, \gamma),$$

where β , α , and γ are all constant parameters.

- 1. Let $\beta e^{\gamma-\alpha} < 1$. Find the periodic trajectory.
- 2. By explicitly solving the system, find an analytical formula for the return map and calculate the Floquet multiplier for the orbit. Is it stable?
- 3. Find the Floquet multiplier via the hybrid variational equation to reach the same conclusion (without solving the dynamics explicitly).

Exercise 3. Let $x = (x_1, x_2) \in \mathbb{R}^2$ and consider the switched system

$$\begin{aligned} \dot{x} &= Ax, \quad x \in Q_1 \cup Q_3 \\ \dot{x} &= Bx, \quad x \in Q_2 \cup Q_4 \end{aligned} \tag{(\star)}$$

where Q_i denotes the i^{th} quadrant, see Fig. 1.

Figure 1: Portrait of the switched system in Exercise 3.

1. Let the matrices be given by

$$A = \begin{bmatrix} -1 & 1/5 \\ -5 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 5 \\ -1/5 & -1 \end{bmatrix}.$$

Show that the origin is stable for each system, $\dot{x} = Ax$ and $\dot{x} = Bx$, but the origin is unstable in the combined system (\star) .

2. Repeat the same procedure with

$$A = \begin{bmatrix} 1 & 1/5 \\ -5 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 5 \\ -1/5 & 1 \end{bmatrix}.$$

Exercise 4. Let G be a Lie group with $h : G \to \mathbb{R}$ with zero as a regular value and set $S = h^{-1}(0)$. When $g \notin S$, the free motion is given by the usual Euler-Poincaré equations

$$\dot{g} = (\ell_g)_* \xi,$$
$$\frac{d}{dt} \frac{\partial \ell}{\partial \xi} = \mathrm{ad}_{\xi}^* \frac{\partial \ell}{\partial \xi}.$$

- 1. Write down the variational impact equations when $g \in S$.
- 2. Consider the case of $G = SO_3$. Is the angular momentum Casimir preserved across impacts? Does this depend on h?
- 3. What happens if we impose the constraint $\langle a, \xi \rangle = 0$?

Figure 2: The pendulum on the cart.

Exercise 5. Consider a pendulum on a cart. Its schematic is shown in Fig. 2. The Lagrangian is

$$L = \frac{1}{2}(M+m)\dot{x}^2 + \frac{1}{2}m\left(\ell^2\dot{\theta}^2 + \ell\dot{\theta}\dot{x}\cos\theta\right) + \ell g\cos\theta,$$

where M is the mass of the cart, m is the mass of the bob, g is the acceleration due to gravity, θ is the angle the arm makes with the vertical, and x is the horizontal position of the cart.

1. The configuration space for this case is $Q = S^1 \times \mathbb{R}$. Let $G_1 = S^1$ and $G_2 = \mathbb{R}$ act on Q via

$$\begin{aligned} (\theta, x) &\mapsto (\theta + \alpha \ \mathrm{mod} 2\pi, x), \quad \alpha \in S^1 \\ (\theta, x) &\mapsto (\theta, x + y), \quad y \in \mathbb{R} \end{aligned}$$

Which group action is the system invariant under? Write down the resulting momentum equation.

- 2. Suppose the cart experiences "external" impacts when $x = \pm z$ for some specified locations z. Write down the variational impact conditions. Is the momentum map found above preserved across impacts?
- 3. Suppose the cart experiences "internal" impacts when $\theta = \pm \varphi$ for some specified location φ . Write down the variational impact conditions. Is the momentum map found above preserved across impacts?
- 4. What happens if the impact location is allowed to move? i.e. repeat the above steps where z(t) and $\varphi(t)$ are allowed to be time-varying.

Exercise 6. Consider the simple bouncing ball on a table,

$$\begin{cases} \ddot{x} = -g, & x > 0\\ \dot{x}^+ = -\dot{x}^-, & x = 0. \end{cases}$$

Let $\Delta(x, v) = (x, -v)$ be the impact map and let $\mu = dx \wedge dv$ be a volume on \mathbb{R}^2 . Show that the naive calculation $\Delta^* \mu = -\mu$ implies that impacts are volume reversing. Do the correct calculation to show that volume is preserved across impacts.

Exercise 7. Is it true that all mechanical impact systems with dissipation are Zeno?