
Exercises in Geometric Mechanics

Exercise 1. Consider a mass in the plane R2 under the influence of gravity.
Its Lagrangian is given by

L =
1

2
m

(
ẋ2 + ẏ2

)
−mgy.

1. Find the Lagrangian in polar coordinates: x = r cos θ, y = r sin θ.

2. The planar pendulum is a planar particle constrained to be a fixed distance
from the origin: r = R. Apply this constraint to the polar Lagrangian
found above to obtain a function Lpen = Lpen(θ, θ̇).

3. Apply the Euler-Lagrange equations to recover the usual pendulum equa-
tions.

4. Apply the Legendre transform to Lpen to obtain the corresponding Hamilto-
nian Hpen. What is pθ? Find Hamilton’s equations of motion and confirm
that they agree with the results from the previous part.

Exercise 2. To extend the previous example to three dimensions, consider the
Lagrangian for the particle in R3 subject to gravity

L =
1

2
m

(
ẋ2 + ẏ2 + ż2

)
−mgz.

1. Find the Lagrangian in spherical coordinates

x = r cosφ sin θ, y = r sinφ sin θ, z = r cos θ.

2. Apply the constraint r = R and write down the Lagrangian for the spherical
pendulum, Lpen = Lpen(φ, θ, φ̇, θ̇).

3. Apply the Euler-Lagrange equations to find the equations of motion for the
spherical pendulum.

4. Apply the Legendre transform to Lpen to obtain Hpen. What are the mo-
menta pφ and pθ? Are either conserved? Provide both a mathematical and
physical reasoning.

5. By turning off the influence of gravity (set g = 0), argue that the equations
of motion (either Lagrange or Hamilton) produce the equations for great
circles on a sphere.
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Exercise 3. Consider a Lagrangian of the form

L =
1

2

n∑
i,j=1

gij(q)q̇
iq̇j ,

where M = (gij) is a symmetric matrix (the entries are smooth functions of
position q). Show that Lagrange’s equations of motion are

∑
s

grsq̈
s +

n∑
i,j=1

Γrij q̇
iq̇j = 0, s = 1, . . . , n

for some functions Γrij. Find these functions and verify that energy is con-
served.

Exercise 4. Consider the first quadrant in R2:

Q = {(x, y) ∈ R2 : x, y > 0}.

1. Show that the following is a symplectic form on Q

ω =
1

x
dx ∧ dpx +

1

y
dy ∧ dpy.

2. Write out the formula for the Poisson bracket with respect to this sym-
plectic form.

3. Consider the Hamiltonian corresponding to the “free” particle

H =
1

2

(
p2x + p2y

)
.

Find the equations of motion and draw some of the base integral curves.

Exercise 5. The Lagrangian for the relativistic particle is given by

L = −m0c
√
c2 − v2.

Use the fiber derivative to find the momenta and the energy. Find the first few
terms in the Taylor expansion of the energy with respect to the velocity.

Exercise 6. Consider a particle of mass m and electric charge e in an elec-
tromagnetic field with electric field E = (Ex, Ey, Ez) and magnetic field B =
(Bx, By, Bz). The equations of motion for the particle are

dp

dt
= eE +

e

c
v ×B. (†)

Show that (†) is Hamiltonian with

H =
1

2m

(
p2x + p2y + p2z

)
+ eϕ, E = −∇ϕ,
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with the symplectic form

ω = ω0 −
e

c
ωB

ω0 = dx ∧ dpx + dy ∧ dpy + dz ∧ dpz

ωB = Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy

Confirm that energy is conserved.

Exercise 7. Do solutions to Hamilton’s equations necessarily exist for all time?
Find an example with finite-time blow up.

Exercise 8. Let H,K : M → R be two Hamiltonians on the symplectic man-
ifold (M,ω). Suppose that they have a regular energy surface in common,
Σ = H−1(e) = K−1(e). Prove that the integral curves of XH and XK are
the same on Σ except possibly for a time reparametrization.

Exercise 9. Let G = SE2 be the special Euclidean group in 2 dimensions.
Elements of this group have the form

g =

cos θ − sin θ x
sin θ cos θ y
0 0 1


What is the Lie-Poisson bracket on se∗2? Are there any Casimirs? What about
se∗3?

Exercise 10. Let Q = S1 ×SE2. We will examine the momentum map arising
from two different groups; let G1 = SE2 and G2 = S1 × R2. Let the actions be
defined via

(θ, φ, x, y) 7→ (θ, φ+ α mod2π, x cosα− y sinα+ a, x sinα+ y cosα+ b)

(θ, φ, x, y) 7→ (θ + β, φ, x+ λ, y + µ),

where (α, a, b) ∈ SE2 and (β, λ, µ) ∈ S1×R2. What are the resulting momentum
maps?

Exercise 11. The Lie-Poisson bracket for the 2-dimensional affine algebra is

{f, g} (x, y) = −y ·
[
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

]
.

Consider the Hamiltonain H = 1/2(x2 + y2). Write down the equations of
motion and draw the phase portrait. What is strange here?

Exercise 12. Let G be a Lie group and consider the Lie-Poisson structure on
P = g∗. Let g have the structure coefficients ckij; this means that with respect to
a basis {ej}, we have

[ei, ej ] =
∑
k

ckijek.
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Suppose that G is unimodular, i.e.∑
j

cjij = 0.

Prove that the Hamiltonian vector fields are volume-preserving.

Exercise 13. Let (S, I,R) ∈ R3 be coordinates and consider the following
bracket

{f, g}(S, I,R) = ⟨v,∇f ×∇g⟩, v =

 aI
0

rSI

 .

where a, r > 0 are constants.

1. Show that the equations of motion with the Hamiltonian H = S + I + R
are the usual SIR epidemiological model.

2. Show that C = R+
a

r
logS is a Casimir of this bracket.

3. Using the fact that H and C are constants of motion, reduce the SIR model
to the 1-dimensional system

Ṡ = −rS
(
C −H + S − a

r
logS

)
. (⋆)
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