Primer on Symplectic Geometry

April 1, 2022

The contents here are reasonably standard and make up the underlying geometry of Hamiltonian systems; all Hamiltonian systems evolve on a symplectic manifold. The goal is for these notes to be self-contained. However, if you're feeling adventurous, some standard references are listed at the end.

- 1. The book by Berndt, [3], is a very short and terse introduction to this topic. However, it is a slow and dense read.
- 2. A reference that many people like is Arnold's book, chapter 8 in [2].
- 3. My personal favorite is the book by Abraham and Marsden, [1], specifically the beginning parts of chapter 3.

1 Symplectic Linear Algebra

We begin with some pure linear algebra. Throughout, V will be a finite-dimensional real vector space.

1.1 Exterior Algebra

The dual space of V is denoted by V^* and is given by

$$V^* = \operatorname{Hom}(V, \mathbb{R}) = \{\varphi : V \to \mathbb{R} \,|\, \varphi \text{ is linear} \}.$$

Choose a basis e_1, \ldots, e_n of V. Every vector is uniquely decomposed into this basis,

$$v = \sum_{i=1}^{n} v^{i} e_{i}.$$

Let $\alpha^i : V \to \mathbb{R}$ be the elements of the dual space that pick out the i^{th} coordinate, i.e. $\alpha^i(v) = v^i$. These elements have the property

$$\alpha^{i}(e_{j}) = \delta^{i}_{j} = \begin{cases} 1 & i = j, \\ 0 & i \neq j. \end{cases}$$
(1)

Exercise 1. Prove that the functions $\alpha^1, \ldots, \alpha^n$ form a basis of V^* and conclude that dim $V = \dim V^*$.

As the dual space contains linear functions on V, a straight-forward extension if that of multi-linear functions. A function $f: V \times \ldots V \to \mathbb{R}$ is k-linear if it is linear in each argument, i.e.

$$f(\ldots,\alpha u+\beta v,\ldots)=\alpha f(\ldots,u,\ldots)+\beta f(\ldots,v,\ldots),$$

for all scalars $\alpha, \beta \in \mathbb{R}$ and vectors $u, v \in V$. A k-linear map is called a k-tensor on V and the set of these objects will be denoted by $\mathcal{T}^k(V)$.

Exercise 2. Prove that dim $\mathcal{T}^k(V) = n^k$. How can you describe a basis?

Three very important examples of tensors are:

- 1. The dot product, $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is a symmetric 2-tensor.
- 2. The determinant, det : $V^n \to \mathbb{R}$ is an *alternating n*-tensor.
- 3. Let $\alpha, \beta \in V^*$ be 1-tensors. Their wedge product, $\alpha \wedge \beta : V \times V \to \mathbb{R}$ is an *alternating* 2-tensor defined by

$$\alpha \wedge \beta(u,v) = \alpha(u)\beta(v) - \alpha(v)\beta(u) = \det \begin{bmatrix} \alpha(u) & \alpha(v) \\ \beta(u) & \beta(v) \end{bmatrix}.$$
 (2)

An alternating k-tensor has the property that

$$f(v_{\sigma(1)},\ldots,v_{\sigma(k)}) = (\operatorname{sgn} \sigma) \cdot f(v_1,\ldots,v_k),$$

for any permutation $\sigma \in S_k$. An alternating k-tensor will be called a k-form. The set of all k-forms on V will be denoted by $\Lambda^k(V)$. Given a k-form and an ℓ -form, we can combine them to create a $(k + \ell)$ -form via the wedge product.

$$(f \wedge g)(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+\ell}) =$$

= $\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} (\operatorname{sgn} \sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) g(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)})$

Exercise 3. Let α, β be two 1-forms. Verify that $\alpha \wedge \beta$ is given by (2).

The wedge product has the following properties.

Proposition 1. Let $f \in \Lambda^k(V)$, $g \in \Lambda^\ell(V)$, and $h \in \Lambda^j(V)$. Then

- 1. $f \wedge g = (-1)^{k\ell} g \wedge f$,
- 2. $f \wedge (g \wedge h) = (f \wedge g) \wedge h$,
- 3. $f \wedge (g+h) = f \wedge g + f \wedge h$, and $(f+g) \wedge h = f \wedge h + g \wedge h$.

It turns out that all forms can be constructed by wedging together 1-forms. This has a particularly nice forms as it neatly generalizes (2). **Proposition 2.** Let $\alpha^1, \ldots, \alpha^k \in V^*$ be 1-forms. Then

$$\left(\alpha^{1} \wedge \ldots \wedge \alpha^{k}\right)\left(v_{1}, \ldots, v_{k}\right) = \det\left[\alpha^{i}(v_{j})\right].$$
(3)

In the case of a 3-form, (3) manifests as

$$\alpha \wedge \beta \wedge \gamma(u, v, w) = \det \begin{bmatrix} \alpha(u) & \alpha(v) & \alpha(w) \\ \beta(u) & \beta(v) & \beta(w) \\ \gamma(u) & \gamma(v) & \gamma(w) \end{bmatrix}.$$

Proposition 2 is not restrictive at all as all k-forms can be constructed in this way. To explore this, we introduce the multi-index notation

$$I = (i_1, \dots, i_k), \quad \alpha^I = \alpha^{i_1} \wedge \dots \wedge \alpha^{i_k}.$$

Exercise 4. Prove the following.

- 1. $\alpha^{I} \neq 0$ if and only if I has no repeating terms.
- 2. α^{I} and α^{J} are linearly independent if and only if I and J are not permutations of each other.
- 3. The (linearly independent) k-forms α^{I} form a basis of $\Lambda^{k}(V)$. Conclude that

$$\dim \Lambda^k(V) = \binom{n}{k} = \frac{n!}{(n-k)!k!}, \quad k \le n$$

and $\Lambda^k(V) = 0$ if k > n.

Most of what we will be interested in are 2-forms. To make their calculations very explicit, let $V = \mathbb{R}^3$ with the standard basis,

$$e_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

The corresponding dual basis is

$$\alpha^1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \quad \alpha^2 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \quad \alpha^3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}.$$

A basis for $\Lambda^2(\mathbb{R}^3)$ is

$$\alpha^1 \wedge \alpha^2, \quad \alpha^1 \wedge \alpha^3, \quad \alpha^2 \wedge \alpha^3.$$
 (4)

Another way to represent a 2-form is by a skew-symmetric matrix; if $f \in \Lambda^2(\mathbb{R}^3)$ then there exists a skew-symmetric matrix A_f such that

$$f(u,v) = \langle u, A_f v \rangle.$$

Exercise 5. For the three 2-forms given in (4), find their corresponding skew-symmetric matrices.

We end this with a definition of the exterior algebra. Recall that Proposition 1 states that the wedge product is a reasonable version of multiplication.

Definition 3. Let $\Lambda(V) = \bigcup_k \Lambda^k(V)$. Then $(\Lambda(V), \wedge)$ is called the exterior algebra over V.

1.2 Symplectic Form

We begin by defining a symplectic form.

Definition 4. A symplectic form is a 2-form $\omega \in \Lambda^2(V)$ such that it is nondegenerate, i.e. if for all $v \in V \ \omega(u, v) = 0$, then u = 0.

Example 5. In \mathbb{R}^2 , $\alpha^1 \wedge \alpha^2$ is a symplectic form. Moreover, in \mathbb{R}^4 , $\alpha^1 \wedge \alpha^3 + \alpha^2 \wedge \alpha^4$ is a symplectic form.

Exercise 6. Verify that the examples above are correct.

Exercise 7. Prove that V possesses a symplectic form if and only if its dimension is even.

Let (V, ω) be a symplectic vector space (this just means that ω is a symplectic form on V). The symplectic form induces a map

$$\begin{split} \omega^{\flat} : V \to V^* \\ \omega^{\flat}(v) = \omega(v, \cdot). \end{split}$$

Since the symplectic form is non-degenerate, this map is invertible and its inverse if given by $\omega^{\sharp} = (\omega^{\flat})^{-1}$. These two maps are called the musical isomorphisms.

As symplectic vector spaces must be even-dimensional, let $\dim V = 2n$. It turns out that the following three properties are equivalent:

- 1. ω is non-degenerate
- 2. ω^{\flat} is invertible, and
- 3. $\omega^n = \omega \wedge \ldots \wedge \omega \neq 0.$

Example 6. Let $V = \mathbb{R}^4$ have the symplectic form $\omega = \alpha^1 \wedge \alpha^3 + \alpha^2 \wedge \alpha^4$. If we write $\omega(u, v) = \langle u, Av \rangle$, the matrix has the form

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

It is straightforward to see that A is non-degenerate as det A = 1. The musical isomorphisms are given by

$$\omega^{\flat}(v) = A^{\mathsf{T}} u^{\mathsf{T}},$$
$$\omega^{\sharp}(\alpha) = \alpha^{\mathsf{T}} A^{-1}.$$

Finally, the wedge-produce is

$$\begin{aligned} \omega^2 &= \left(\alpha^1 \wedge \alpha^3 + \alpha^2 \wedge \alpha^4\right)^2 \\ &= \overline{\alpha^1 \wedge \alpha^3 \wedge \alpha^1 \wedge \alpha^3} + \alpha^1 \wedge \alpha^3 \wedge \alpha^2 \wedge \alpha^4 + \alpha^2 \wedge \alpha^4 \wedge \alpha^1 \wedge \alpha^3 + \overline{\alpha^2 \wedge \alpha^4 \wedge \alpha^2 \wedge \alpha^4} \\ &= -2\alpha^1 \wedge \alpha^2 \wedge \alpha^3 \wedge \alpha^4 \neq 0. \end{aligned}$$

The two terms that cancel out have a repeating index and the final result is nonzero as no terms are repeating.

It is important to point out that ω^n is a top-form, i.e. $\omega^n \in \Lambda^{\dim V}(V)$. By a previous exercise, the determinant is a top-form and the space of top-forms is 1-dimensional. Therefore, it turns out that for a symplectic form $\omega, \omega^n = C \cdot \det$ for some constant C.

1.3 Subspaces

It turns out that a (2*n*-dimensional) symplectic vector space (V, ω) possesses distinguished subspaces. To examine these, we first define the orthogonal complement of a subspace $W \subset V$,

$$W^{\perp} := \left\{ v \in V : \omega(v, w) = 0, \, \forall w \in W \right\}.$$

A similar object is the annihilator, $W^{\circ} \subset V^{*}$ given by

$$W^{\circ} := \{ \varphi \in V^* : \varphi(w) = 0, \forall w \in W \}.$$

These two subspaces are identified via $\omega^{\flat}(W^{\perp}) = W^{\circ}$.

Exercise 8. Prove that $\dim W^{\perp} = \dim V - \dim W$ and that $\omega^{\flat}(W^{\perp}) = W^{\circ}$.

We can now define the four distinguished subspaces.

Definition 7. Let (V, ω) be a symplectic vector space and $W \subset V$ be a subspace.

- 1. If $\omega|_W = 0$, W is called isotropic.
- 2. If W^{\perp} is isotropic, W is called coisotropic.
- 3. If $\omega|_W$ is non-degenerate, W is called a symplectic subspace.
- 4. If W is both isotropic and coisotropic, W is called Lagrangian.

Example 8. Again, consider $V = \mathbb{R}^4$ with the symplectic form $\omega = \alpha^1 \wedge \alpha^3 + \alpha^2 \wedge \alpha^4$. Then

- 1. $W = \operatorname{span}\{e_1, e_3\}$ is symplectic,
- 2. $W = \operatorname{span}\{e_1\}$ is isotropic,
- 3. $W = \operatorname{span}\{e_1, e_2, e_3\}$ is coisotropic, and
- 4. $W = \text{span}\{e_1, e_2\}$ is Lagrangian.

Exercise 9. Verify this example.

It turns out that there is another (equivalent) characterization of these subspaces. Let $\dim W = k$.

W	isotropic	\iff	$W \subset W^\perp$	$\implies k \le n,$
W	coisotropic	\iff	$W^\perp \subset W$	$\implies k \ge n,$
W	Lagrangian	\iff	$W = W^{\perp}$	$\implies k = n.$

2 Symplectic Manifolds

Let M be a smooth manifold. For each point $x \in M$, the tangent space T_xM is a vector space. It would seem natural to give M a symplectic structure by making each of its tangent spaces a symplectic manifold. However, it is slightly more nuanced than this.

A form on a vector space generalizes to a differential form on a manifold. Let $\Omega^k(M)$ be the set of differential k-forms on the manifold M, i.e. for $\alpha \in \Omega^k(M)$ and for each $x \in M$, $\alpha_x \in \Lambda^k(T_xM)$. We also require that this map changes smoothly with x.

Remark 9. Essentially, a differential form is a k-form whose coefficients are smooth functions.

Example 10. If $M = \mathbb{R}^3$, a 2-form is given by

 $\alpha = \sin z \, dx \wedge dz + x^4 \, dy \wedge dz.$

Differentiating a k-form produces a (k + 1)-form. Continuing from the previous example,

$$d\alpha = \cos z \, dz \wedge dx \wedge dz + 4x^3 \, dx \wedge dy \wedge dz$$
$$= 4x^3 \, dx \wedge dy \wedge dz.$$

We are now able to define a symplectic manifold.

Definition 11. The pair (M, ω) is called a symplectic manifold if $\omega \in \Omega^2(M)$ is a differential 2-form such that

1. for each $x \in M$, (T_xM, ω_x) is a symplectic vector space, and

2. $d\omega = 0$.

Remark 12. Since a symplectic vector space must be even dimensional, it follows that a symplectic manifold must also be even dimensional. An interesting question is: Do all even dimensional manifolds possess a symplectic form?

The standard example of a symplectic manifold (I think this is the only case we'll ever consider) is the cotangent bundle of a manifold. Let Q be a smooth manifold with coordinates $x = (x^1, \ldots, x^n)$. Consider the induced coordinates $(x, p) = (x^1, \ldots, x^n, p_1, \ldots, p_n)$ on T^*Q . The tautological 1-form $\vartheta \in \Omega^1(T^*Q)$ is given by

$$\vartheta = \sum_{i} p_i \, dx^i,$$

which induces the canonical symplectic form

$$\omega = -d\vartheta = \sum_i dx^i \wedge dp_i.$$

2.1 Poisson Manifolds

A sister concept to a symplectic manifold is a Poisson manifold.

Definition 13. A manifold P is a Poisson manifold if there exists a bracket $\{\cdot, \cdot\} : C^{\infty}(P) \times C^{\infty}(P) \to C^{\infty}(P)$ such that

- 1. $\{f,g\} = -\{g,f\}$ (skew symmetric)
- 2. $\{f, \alpha g + \beta h\} = \alpha \{f, g\} + \beta \{f, h\}$ for $\alpha, \beta \in \mathbb{R}$ (bi-linear)
- 3. $\{f, gh\} = \{f, g\}h + \{f, h\}g$ (Liebniz' rule)
- 4. $\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$ (Jacobi identity)

The first two conditions seem very similar to that of a 2-form. It turns out that all symplectic manifolds are also Poisson via the following. Let $f: M \to \mathbb{R}$ be a smooth function on the symplectic manifold (M, ω) . Define the vector field X_f through the following procedure:

$$\Omega^1(M) \ni df = \omega(X_f, \cdot),$$

i.e. $X_f = \omega^{\sharp}(df)$. Then $\{f, g\} = \omega(X_f, X_g)$ is a Poisson bracket. If $M = T^*Q$ is a cotangent bundle with coordinates (x, p), the bracket becomes

$$\{f,g\} = \omega(X_f, X_g) = \sum_i \frac{\partial f}{\partial x^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial x^i}.$$

All symplectic manifolds are Poisson, is the converse true?

Exercise 10. Let $P = \mathbb{R}^3$ with q = (x, y, z) and consider the bracket

$$\{f,g\} (q) = \langle q, \nabla f(q) \times \nabla g(q) \rangle$$

= $x \left(\frac{\partial f}{\partial y} \frac{\partial g}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial g}{\partial y} \right) - y \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial g}{\partial x} \right) + z \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \right)$

Prove that this is a Poisson bracket. Here we have an odd dimensional Poisson manifold while all symplectic manifolds must be even dimensional. Conclude that \mathbb{R}^3 cannot be symplectic and provide a reasoning (other than being odd dimensional).

For a given non-degenerate 2-form $\alpha \in \Omega^2(M)$, we can construct an almost Poisson bracket by the procedure

$$\{f,g\}_{\alpha} := \alpha(X_f^{\alpha}, X_g^{\alpha}), \quad df = \alpha(X_f^{\alpha}, \cdot).$$

This bracket is skew, bi-linear, and satisfies Liebniz' rule. However, it does not necessarily satisfy the Jacobi identity.

Exercise 11. (This is quite challenging) Let f, g, h be smooth functions and define the Jacobiator as

$$Jac(f,g,h) = \{f, \{g,h\}_{\alpha}\}_{\alpha} + \{g, \{h,f\}_{\alpha}\}_{\alpha} + \{h, \{f,g\}_{\alpha}\}_{\alpha}$$

Therefore the bracket is a Poisson bracket if and only if Jac(f, g, h) = 0 for any choice of functions. Prove that

$$\operatorname{Jac}(f,g,h) = d\alpha \left(X_f^{\alpha}, X_g^{\alpha}, X_h^{\alpha} \right)$$

and conclude that a non-degenerate 2-form generates a Poisson bracket if and only if it is closed.

3 Hamiltonian Systems

Let (M, ω) be a symplectic manifold and $H : M \to \mathbb{R}$ be a smooth function. The triple (M, ω, H) forms a Hamiltonian system and generates the Hamiltonian vector field via

$$dH = \omega(X_H, \cdot). \tag{5}$$

Example 14. Let $M = \mathbb{R}^2$ with coordinates (x, p) and let $\omega = dx \wedge dp$. We have

$$dH = \frac{\partial H}{\partial x}dx + \frac{\partial H}{\partial p}dp,$$
$$X_H = A\frac{\partial}{\partial x} + B\frac{\partial}{\partial p}, \quad \omega(X_H, \cdot) = Adp - Bdx.$$

Equating these, we see that

$$A = \frac{\partial H}{\partial p}, \quad B = -\frac{\partial H}{\partial x}.$$

This is precisely Hamilton's equations of motion:

$$\dot{x} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial x}$$

It is also possible to view the dynamics from a functional point of view to utilize the Poisson bracket. Let φ_t be the flow of Hamilton's ordinary differential equations. Then

$$\dot{f} = \left. \frac{d}{dt} \right|_{t=0} f\left(\varphi_t(x)\right) = df(X_H) = \langle \nabla f, X_H \rangle = \{f, H\}$$

Exercise 12. Consider the Poisson bracket on \mathbb{R}^3 given in a previous exercise. Let $g : \mathbb{R} \to \mathbb{R}$ be an arbitrary smooth function and consider the function $f(q) := g(||q||^2)$. Prove that

$$\{f,H\}=0,$$

for any smooth function $H : \mathbb{R}^3 \to \mathbb{R}$. Such a function is called a <u>Casimir</u>.

There are two key properties of a Hamiltonian system: energy and volume conservation. Volume is more intricate, but energy is very straightforward.

Proposition 15. $\dot{H} = 0$.

Proof. This follows from the fact that the Poisson bracket is skew:

$$H = \{H, H\} = 0.$$

Let $M=T^{\ast}Q$ be the usual cotangent bundle with coordinates (x,p) and the canonical symplectic form

$$\omega = \sum_i \, dx^i \wedge dp_i.$$

Then it is associated with the skew-symmetric matrix J, such that $\omega(u, v) = \langle u, Jv \rangle$, and

$$J = \begin{bmatrix} 0 & \mathrm{Id}_n \\ -\mathrm{Id}_n & 0 \end{bmatrix}.$$

An alternate way to write $dH = \omega(X_H, \cdot)$ is

$$X_H = J\nabla H. \tag{6}$$

Sometimes, the Hamiltonian vector field is referred to as the *symplectic gradient*. To see that (6) produces the usual answer, we compute

$$\begin{bmatrix} 0 & \mathrm{Id}_n \\ -\mathrm{Id}_n & 0 \end{bmatrix} \cdot \begin{bmatrix} H_x \\ H_p \end{bmatrix} = \begin{bmatrix} H_p \\ -H_x \end{bmatrix}$$

A similar procedure can produce Hamiltonian systems in a Poisson manifold. If q is a coordinate, then $\dot{q} = \{q, H\}$. In the \mathbb{R}^3 example, we have

$$\dot{x} = \{x, H\} = -y \cdot \frac{\partial H}{\partial z} + z \cdot \frac{\partial H}{\partial y}$$
$$\dot{y} = \{y, H\} = x \cdot \frac{\partial H}{\partial z} - z \cdot \frac{\partial H}{\partial x}$$
$$\dot{z} = \{z, H\} = -x \cdot \frac{\partial H}{\partial y} + y \cdot \frac{\partial H}{\partial x}$$

Collapsing this into vector notation with q = (x, y, z), we have

$$\dot{q} = \nabla H \times q.$$

We end with a couple exercises on basic dynamic properties of Hamiltonian systems.

Exercise 13. Consider a Hamiltonian system

$$\dot{x} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial x}.$$

Let (x_0, p_0) be a fixed point of the dynamics and let A be the linearization of the dynamics about this point. Prove that if λ is an eigenvalue of A, so is $-\lambda$, $\overline{\lambda}$, and $-\overline{\lambda}$. Conclude that fixed points of Hamiltonian systems cannot be (exponentially) asymptotically stable.

Exercise 14. (Moderately challenging) Let (x_0, p_0) be a fixed point of a Hamiltonian system. Suppose that it is a hyperbolic fixed point (no eigenvalues have real part zero). Its stable manifold is given by

$$W^{s}(x_{0}, p_{0}) = \left\{ (x, p) : \lim_{t \to \infty} \left(x(t), p(t) \right) = (x_{0}, p_{0}) \right\}.$$

Prove that its stable manifold is a Lagrangian submanifold. A submanifold is Lagrangian if its tangent space is a Lagrangian subspace at each point.

References

- R. Abraham and J.E. Marsden. Foundations of Mechanics. AMS Chelsea publishing. AMS Chelsea Pub./American Mathematical Society, 2008.
- [2] V.I. Arnold. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. Springer, 1989.
- [3] R. Berndt. An Introduction to Symplectic Geometry. Graduate studies in mathematics. American Mathematical Society, 2001.