Primer on Symplectic Geometry

April 1, 2022

The contents here are reasonably standard and make up the underlying ge-
ometry of Hamiltonian systems; all Hamiltonian systems evolve on a symplectic
manifold. The goal is for these notes to be self-contained. However, if you're
feeling adventurous, some standard references are listed at the end.

1. The book by Berndt, [3], is a very short and terse introduction to this
topic. However, it is a slow and dense read.

2. A reference that many people like is Arnold’s book, chapter 8 in [2].

3. My personal favorite is the book by Abraham and Marsden, [1], specifically
the beginning parts of chapter 3.

1 Symplectic Linear Algebra

We begin with some pure linear algebra. Throughout, V will be a finite-
dimensional real vector space.

1.1 Exterior Algebra
The dual space of V' is denoted by V* and is given by
V* =Hom(V,R) = {¢: V — R|p is linear} .
Choose a basis eq,...,e, of V. Every vector is uniquely decomposed into this
basis,
Uiei.
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Let o : V — R be the elements of the dual space that pick out the it"-
coordinate, i.e. a*(v) = v*. These elements have the property

a‘lej) = 5; = {(1) z;?’ (1)
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Exercise 1. Prove that the functionsa', ..., a" form a basis of V* and conclude

that AimV = dim V*.



As the dual space contains linear functions on V', a straight-forward exten-
sion if that of multi-linear functions. A function f:V x ...V — R is k-linear
if it is linear in each argument, i.e.

fl.;au+pu,..)=af(...,u,...)+Bf(..,0,...),

for all scalars o, 8 € R and vectors u,v € V. A k-linear map is called a k-tensor
on V and the set of these objects will be denoted by T#(V).

Exercise 2. Prove that dim T*(V) = n*. How can you describe a basis?
Three very important examples of tensors are:
1. The dot product, (-,-) : V x V — R is a symmetric 2-tensor.
2. The determinant, det : V" — R is an alternating n-tensor.
3. Let o, 8 € V* be 1-tensors. Their wedge product, a AS:V xV — R is
an alternating 2-tensor defined by

a A B(u,v) = alu)f(v) — a(v)B(u) = det [a(u) 04(11)] . (2)

An alternating k-tensor has the property that

F(o(1y, s Vo)) = (sgno) - f(vi,...,vk),

for any permutation o € S;. An alternating k-tensor will be called a k-form.
The set of all k-forms on V' will be denoted by A*(V). Given a k-form and an
{-form, we can combine them to create a (k + £)-form via the wedge product.

g)\V1,. -5V, V15 - Vkte) =
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1
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Exercise 3. Let «, 8 be two I-forms. Verify that a A 8 is given by (2).
The wedge product has the following properties.
Proposition 1. Let f € A¥(V), g € AY(V), and h € AI(V). Then
1 fAag=(=DMgnT],
2. fA(gNR)=(fNg)Nh,
3. fA(g+h)=fAg+fAh and (f+g9)ANh=fAh+gAh.

It turns out that all forms can be constructed by wedging together 1-forms.
This has a particularly nice forms as it neatly generalizes (2).



Proposition 2. Let ol,...,a* € V* be 1-forms. Then
(ar ALona®) (v, .. vk) = det [o (v))] - (3)
In the case of a 3-form, (3) manifests as

afu) av) a(w)
aABAy(u,v,w) =det |Bu) Bv) Blw)
Y(u) () y(w)

Proposition 2 is not restrictive at all as all k-forms can be constructed in this
way. To explore this, we introduce the multi-index notation

I=(iy,...,ix), al=a""A...Aa.
Exercise 4. Prove the following.
1. ! #0 if and only if I has no repeating terms.

2. ol and o’ are linearly independent if and only if I and J are not permu-
tations of each other.

3. The (linearly independent) k-forms o form a basis of A¥(V). Conclude

that |
ok (M) n! <
dim A® (V) (k) Rk k<n
and A*(V) =0 if k > n.

Most of what we will be interested in are 2-forms. To make their calculations
very explicit, let V' = R3 with the standard basis,

1 0 0
€1 = 0 5 €9 = 1 5 €3 = 0
0 0 1

The corresponding dual basis is
al=[10 0], o*>=[0 1 0], o*=[0 0 1].
A basis for A%(R3) is
a'na?, ataaed, o Aad. (4)

Another way to represent a 2-form is by a skew-symmetric matrix; if f € A%(R3)
then there exists a skew-symmetric matrix Ay such that

F(u,v) = (u, Ap).

Exercise 5. For the three 2-forms given in (4), find their corresponding skew-
symmetric matrices.

We end this with a definition of the exterior algebra. Recall that Proposition
1 states that the wedge product is a reasonable version of multiplication.

Definition 3. Let A(V) = UpA*¥(V). Then (A(V),A) is called the exterior
algebra over V.



1.2 Symplectic Form
We begin by defining a symplectic form.

Definition 4. A symplectic form is a 2-form w € A*(V) such that it is non-
degenerate, i.e. if for allv € V w(u,v) =0, then u = 0.

Example 5. In R?, o A a? is a symplectic form. Moreover, in R*, o' A a® +
a? Aot is a symplectic form.

Exercise 6. Verify that the examples above are correct.

Exercise 7. Prove that V possesses a symplectic form if and only if its dimen-
sion 15 even.

Let (V,w) be a symplectic vector space (this just means that w is a symplectic
form on V). The symplectic form induces a map

WiV sV
W’ (v) = w(v,-).

Since the symplectic form is non-degenerate, this map is invertible and its inverse

P -1 . . .

if given by w? = (wb) . These two maps are called the musical isomorphisms.
As symplectic vector spaces must be even-dimensional, let dim V' = 2n. It

turns out that the following three properties are equivalent:

1. w is non-degenerate
2. W’ is invertible, and
3w =wA...\Nw#0.

Example 6. Let V = R* have the symplectic form w = a* A a® +a? Ao, If
we write w(u,v) = (u, Av), the matriz has the form

0o 0 10

0O 0 01

0 0 0

0 -1 0 0

1t is straightforward to see that A is non-degenerate as det A = 1. The musical
isomorphisms are given by

Finally, the wedge-produce is

w® = (a /\(Jz?’—kcu2/\cz4)2

:m—l—al/\a3Aa2Aa4+a2/\a4/\a1/\a3+m2\Aa\4

=-2a'Aa? AP At £0.



The two terms that cancel out have a repeating index and the final result is
nonzero as no terms are repeating.

It is important to point out that w” is a top-form, i.e. w™® € AY™MV (V). By a
previous exercise, the determinant is a top-form and the space of top-forms is
1-dimensional. Therefore, it turns out that for a symplectic form w, w™ = C'-det
for some constant C'.

1.3 Subspaces

It turns out that a (2n-dimensional) symplectic vector space (V,w) possesses
distinguished subspaces. To examine these, we first define the orthogonal com-
plement of a subspace W C V,

Wt ={veV :wkw) =0, YwecW}.
A similar object is the annihilator, W° C V* given by
We:={peV*:pw)=0,YweW}.
These two subspaces are identified via w®(W+) = We°.
Exercise 8. Prove that dim W+ = dimV — dim W and that «*(W+) = W°.
We can now define the four distinguished subspaces.
Definition 7. Let (V,w) be a symplectic vector space and W C V be a subspace.
1. If wlw =0, W is called isotropic.
2. If W+ is isotropic, W is called coisotropic.

3. If w|w is non-degenerate, W is called a symplectic subspace.

4. If W is both isotropic and coisotropic, W is called Lagrangian.

Example 8. Again, consider V = R* with the symplectic form w = a' A a® +
a? Na*. Then

1. W = span{ey, ez} is symplectic,

2. W = span{ey} is isotropic,

3. W = span{ey, eq, e3} is coisotropic, and

4. W = span{ey, ex} is Lagrangian.
Exercise 9. Verify this example.

It turns out that there is another (equivalent) characterization of these sub-
spaces. Let dim W = k.

w isotropic — WcWwW!t — k<n
W coisotropic <+= WtcW = k>n,
W  Lagrangian <= W=W% = k=n



2 Symplectic Manifolds

Let M be a smooth manifold. For each point x € M, the tangent space T, M
is a vector space. It would seem natural to give M a symplectic structure by
making each of its tangent spaces a symplectic manifold. However, it is slightly
more nuanced than this.

A form on a vector space generalizes to a differential form on a manifold. Let
QF(M) be the set of differential k-forms on the manifold M, i.e. for a € QF(M)
and for each x € M, o, € AF (T, M). We also require that this map changes
smoothly with .

Remark 9. FEssentially, a differential form is a k-form whose coefficients are
smooth functions.

Example 10. If M = R3, a 2-form is given by
a=sinzdr Adz+ ztdy A dz.

Differentiating a k-form produces a (k + 1)-form. Continuing from the pre-
vious example,

do = cos zdz A dx A dz + 4o dx A dy A dz
=42 dx A dy A dz.
We are now able to define a symplectic manifold.

Definition 11. The pair (M,w) is called a symplectic manifold if w € Q?(M)
is a differential 2-form such that

1. for each x € M, (T, M,w,) is a symplectic vector space, and
2. dw = 0.

Remark 12. Since a symplectic vector space must be even dimensional, it fol-
lows that a symplectic manifold must also be even dimensional. An interesting
question is: Do all even dimensional manifolds possess a symplectic form?

The standard example of a symplectic manifold (I think this is the only case

we’ll ever consider) is the cotangent bundle of a manifold. Let @ be a smooth

manifold with coordinates x = (z!,...,2™). Consider the induced coordinates

(x,p) = (z*,...,2", p1,...,pn) on T*Q. The tautological 1-form ¥ € Q1 (T*Q)
is given by

v = Z Y23 dmiu
which induces the canonical symplectic form

w=—d) =Y da' Adp;.



2.1 Poisson Manifolds

A sister concept to a symplectic manifold is a Poisson manifold.

Definition 13. A manifold P is a Poisson manifold if there exists a bracket
{:,:}: C®(P) x C=(P) — C*(P) such that

L. {f.9} = {9, } (skew symmetric)

2. {f,ag+ Bh} = o{f, g} + B{f, b} for o, B € R (bi-linear)
3. {f.gh} = {f,gth+ {f. h}g (Liebniz’ rule)

4- {f:{g,h}} + {9, {n, f}} +{h{f,9}} = 0 (Jacobi identity)

The first two conditions seem very similar to that of a 2-form. It turns out
that all symplectic manifolds are also Poisson via the following. Let f : M — R
be a smooth function on the symplectic manifold (M, w). Define the vector field
Xy through the following procedure:

QN (M) 3 df = w(Xy,-),

ie. X; = wH(df). Then {f,g} = w(Xy,X,) is a Poisson bracket. If M = T*Q
is a cotangent bundle with coordinates (z,p), the bracket becomes

of 9g Of dg
- 0x' Op;  Op; Ozt

{19} = w(Xy, Xy) =

All symplectic manifolds are Poisson, is the converse true?

Exercise 10. Let P = R3 with q = (,y, z) and consider the bracket

{f,9} (@) = (¢, Vf(q) x Vg(q))

(8]"89 8fag) (8fﬁg 8fag) (afag 8fag)
=T\ 55— a7 | — A +e2la—5 55 |-

Oy 0z 0z Oy o 0z 0z Ox Ox dy Oy oz

Prove that this is a Poisson bracket. Here we have an odd dimensional Poisson
manifold while all symplectic manifolds must be even dimensional. Conclude
that R® cannot be symplectic and provide a reasoning (other than being odd
dimensional).

For a given non-degenerate 2-form a € Q?(M), we can construct an almost
Poisson bracket by the procedure

{f,g}a = Ck(X?7X;), df:a(X?")'

This bracket is skew, bi-linear, and satisfies Liebniz’ rule. However, it does not
necessarily satisfy the Jacobi identity.



Exercise 11. (This is quite challenging) Let f,g,h be smooth functions and
define the Jacobiator as

Jac(f, 9,h) = {f {9, h}ata +{9,{h, flata +{h{f,9}a}a-

Therefore the bracket is a Poisson bracket if and only if Jac(f, g, h) =0 for any
choice of functions. Prove that

Jac(f,9,h) = da (X7, X, X7)

and conclude that a non-degenerate 2-form generates a Poisson bracket if and
only if it is closed.

3 Hamiltonian Systems

Let (M,w) be a symplectic manifold and H : M — R be a smooth function.
The triple (M, w, H) forms a Hamiltonian system and generates the Hamiltonian

vector field via
dH = w(Xpg,-). (5)

Example 14. Let M = R? with coordinates (z,p) and let w = dx A dp. We
have

OH OH
dH = —d —
Ep T+ ap dp,
0 0
Xy=A—+B—
H Ox + op’
Equating these, we see that

w(Xp, ) = Adp — Bdx.

OH B 0H

A=— =——
op’ Oz
This is precisely Hamilton’s equations of motion:
. OH . OH
= —), =——
ap T o

It is also possible to view the dynamics from a functional point of view to
utilize the Poisson bracket. Let ¢; be the flow of Hamilton’s ordinary differential
equations. Then

F=2| T@)=d(Xu) =(Vf, Xu) = {f, H}
t=0
Exercise 12. Consider the Poisson bracket on R3 given in a previous ezercise.
Let g : R — R be an arbitrary smooth function and consider the function f(q) :=
g (llqll?). Prove that
{f,H} =0,

for any smooth function H : R® — R. Such a function is called a Casimir.



There are two key properties of a Hamiltonian system: energy and volume
conservation. Volume is more intricate, but energy is very straightforward.

Proposition 15. H = 0.
Proof. This follows from the fact that the Poisson bracket is skew:
H={HH}=0.
O

Let M = T*@Q be the usual cotangent bundle with coordinates (z,p) and
the canonical symplectic form

w = Z dzt A dp;.

Then it is associated with the skew-symmetric matrix J, such that w(u,v) =

(u, Jv), and
0 1d,,
/= [—Idn 0 ] '

An alternate way to write dH = w(Xg,-) is
Xy = JVH. (6)

Sometimes, the Hamiltonian vector field is referred to as the symplectic gradient.
To see that (6) produces the usual answer, we compute

0 Id,| |Ha| _ | Hy
—Id, © H,| |-H,
A similar procedure can produce Hamiltonian systems in a Poisson manifold. If
q is a coordinate, then ¢ = {q, H}. In the R?® example, we have

. OH OH
x—{x,H}——y-—az —|—z-—6y
. OH 0H

. OH OH
Z—{Z,H}——m-—ay +y-—ax

Collapsing this into vector notation with ¢ = (z,y, z), we have
¢=VH xq.

We end with a couple exercises on basic dynamic properties of Hamiltonian
systems.



Exercise 13. Consider a Hamiltonian system

,_0H o 0H
T P o

Let (z9,po) be a fized point of the dynamics and let A be the linearization of
the dynamics about this point. Prove that if A\ is an eigenvalue of A, so is
—\, A\, and —X. Conclude that fized points of Hamiltonian systems cannot be
(exponentially) asymptotically stable.

Exercise 14. (Moderately challenging) Let (xo,po) be a fized point of a Hamil-
tonian system. Suppose that it is a hyperbolic fixed point (no eigenvalues have
real part zero). Its stable manifold is given by

W*(xo,po) = {(Jc,p) : tlim (z(t),p(t)) = (xo,po)}.

— 00

Prove that its stable manifold is a Lagrangian submanifold. A submanifold is
Lagrangian if its tangent space is a Lagrangian subspace at each point.

References

[1] R. Abraham and J.E. Marsden. Foundations of Mechanics. AMS Chelsea
publishing. AMS Chelsea Pub./American Mathematical Society, 2008.

[2] V.I. Arnold. Mathematical Methods of Classical Mechanics. Graduate Texts
in Mathematics. Springer, 1989.

[3] R. Berndt. An Introduction to Symplectic Geometry. Graduate studies in
mathematics. American Mathematical Society, 2001.

10



